
Looping for Encryption Key Generation over the Internet: A New

Frontier in Physical Layer Security

Amir K. Khandani

E&CE Dept., Univ. of Waterloo, Waterloo, Ontario, Canada; khandani@uwaterloo.ca

Abstract: Current key sharing techniques rely on the

hardness of solving a solvable, but complex, mathe-

matical problem. This entails, in Information The-

oretical sense, the encryption key is not secret, it

can be found by solving the underlying mathemat-

ical problem. Sensitive data we encrypt today using

traditional techniques can be recorded by malicious

parties and be deciphered in the future whenever im-

proved hacking techniques and supporting computing

technology permit. Information Theory proves the

existence of methods for sharing of encryption keys

that are unconditionally secure, but does not show

how to bring such theoretical results to practical use.

One of the central information theoretical approaches

to key sharing is based on exploiting common ran-

domness. This theoretical result states that if two

dependent random variables, A and B, are available

at Alice and Bob, then, by communicating through

a public channel between A and B, it is possible to

securely share a key of size I(A;B). To bridge the

gap between theory and practice, one needs a method

to generate two sets of dependent random variables,

one at Alice's side and the other one at the Bob'

side, as well as a method to extract two identical

keys from these dependent random variables. This

article presents a novel technique to achieve this goal

over the Internet. Dependent random variables are

generated by measuring packet travel times between

Alice and Bob, and error-free key extraction from de-

pendent random variables is realized by using a ran-

domized Low Density Parity Check Code (LDPC).

Through looping of packets between Alice and Bob,

the mutual information between random variables is

increased. Finally, methods are presented to measure

*Author gratefully acknowledges Neda Mohammadizadeh
for her contribution in gathering reported simulation results
related to actual measurements over Azure Microsoft Cloud.

the likelihood values required in decoding the under-

lying LDPC. It is shown that the key rate is approxi-

mately equal to 0.5 log2
(
4L2/(4L− 1)

)
≈ 0.5 log2(L)

where L is the number of round trips (loops). Test re-

sults (based on measurements between distant nodes

over the Internet) are presented, demonstrating the

feasibility of the proposed technique. The proposed

method is implemented entirely in software (through

high-level programming, e.g., using C-language, at

the application layer). This operation does not re-

quire modifying the underlying network.

1- Introduction: Key sharing involves generating

two identical strings of binary numbers at two di�er-

ent locations without disclosing any information to

potential eavesdroppers. Typically, keys of size 256

bits are needed to be used with Advanced Encryption

System (AES) to encrypt data for secure �transmis-

sion�, �sharing� or �storage�. Ideally, encryption keys

should be truly random, can be shared between le-

gitimate parties without disclosing any information

about the key bits, and can be renewed whenever de-

sired. Techniques presented in this article address

this problem.

2- Proposed Method: To establish a key be-

tween a Node A (Alice) and a Node B (Bob) over the

Internet, Node A sends a sequence of N User Data-

gram Protocol (UDP) packets, indexed from 1 to N ,

at regular time intervals (typically with 10msec time

gap) to Node B. Each UDP packet contains its cor-

responding index, and (optionally) a set of random

bits. Indices of packets are used to generate the key

pair, and if available/needed, packets' contents can

be used to enlarge the key size. Node B sends the

received packets, one by one, back to Node A and

Node A sends them back to Node B. Upon L rounds

of looping (called multi-loop), Node A and Node B

separately measure their corresponding total round

978-1-6654-9380-2/23/$31.00 ©2023 Crown 128

trip times for each packet. Figure 1 shows an ex-

ample for L = 2 loops (i.e., two complete loops plus

a single hop to close the �nal loop). Due to loop-

ing, these round-trip times, although random, will be

close to each other (will have 2L − 2 common travel

times). This is due to the fact that time is additive in

successive looping of a given packet. Figure 2 shows

an example for L = 2.

Figure 1: Round trip times measured at Node A (Al-
ice) and at Node B (Bob) for two loops (two complete
loops plus a single hop to close the �nal loop).

Delay values corresponding to passing the packets

from the receiver front-end to the transmitter front-

end (within Node A or Node B), i.e., ϵ1, ϵ2, ϵ3, ϵ4
in Fig. 2, are small compared to travel times across

network links. If the number of loops is equal to L,

then there will be 2L such ϵ values which, although

small, are all in common between

TA = TTL+1 − TT1 and TB = TRL+1 − TR1 (1)

where TA and TB denote the round trip times for

Node A and Node B, respectively . For simplicity

of notation, ϵ values are dropped from expressions

hereafter. Let us use the notations

T
(ℓ)
A = TT

(ℓ)
L+1 − TT

(ℓ)
1 and T

(ℓ)
B = TR

(ℓ)
L+1 − TR

(ℓ)
1

(2)

to denote the total travel times, measured by Node

A and Node B, respectively, for packet indexed by

ℓ. Note that since each node measures the di�erence

between two time values (relying on each node's local

clock), the two nodes do not need to be time synchro-

nized. As an example, let us focus on the multi-loop

A → A. In a con�guration with L loops, there will

be a total of 2L delay values contributing to such

a multi-loop, followed by a delay value for the �nal

link from A to B. A similar argument applies to the

B → B multi-loop (see Figs. 1 and 2).

2.1- Extracting bit values from measured

travel times: Each node records its measured multi-

Figure 2: Round trip times measured at Node A (Al-
ice) and at Node B (Bob). ϵ1, ϵ2, ϵ3, ϵ4 denote
delay values incurred within Node A and Node B,
respectively. Note that seven out of eight compo-
nents forming TT3 − TT1 and TR3 − TR1, namely
ϵ1, d2, ϵ2, d3, ϵ3, d4, ϵ4, are the same in the two mea-
surements. Round trip time measured at Node A and
at Node B, namely TT3 − TT1 and TR3 − TR1, re-
spectively, are dependent random variables (due to
having the value of ϵ1 + d2 + ϵ2 + d3 + ϵ3 + d4 + ϵ4 in
common).

loop travel time for each UDP packet, computes the

mean of the recorded multi-loop travel times, and

then assigns a binary value of zero to packets with

a travel time less than the mean value; and a bi-

nary value of one to those with a travel time higher

than the mean. The resulting bit streams have many

common values since the measured multi-loop travel

times di�er only in two links among the 2L links form-

ing each multi-loop, namely the �rst link and the last

link connecting A → B. Travel times in the �rst link

and the last link form a pair of dependent random

variables. Since these two links connect the same pair

of nodes in the same direction, it is likely that they

pass through the same physical connections/paths in

the network. This increases the dependency between

respective travel times. On the other hand, since the

�rst and the last transmissions become active at dif-

ferent times, the dependency between the two travel

times reduces. In summary, 2L−2 summands forming

129

the two multi-loop travel times are identical, and the

remaining two are dependent random variables. A

higher probabilistic dependency translates to a higher

level of common randomness. Next, a method is pre-

sented to form/extract likelihood values for each bit.

2.2- Removing discrepancies between bit

streams: To remove any remaining discrepancy,

Node B forms a randomized parity check generator

for an (n = k+ p, k) Low-Density Parity Check Code

(LDPC) where n is the coded block length, k is the

size of data to be encoded and p is the size of parities.

Data to be encoded corresponds to the bit stream at

Node A, with some error detection bits d added for

error detection. This matrix, denoted asH, is further

randomized (by/at Node B) using a procedure simi-

lar to what is used in McEliece Cryptosystem [3] (also

see [4] and references therein), i.e., Node B computes,

Ĝ = AHP. (3)

In 3, P is a permutation matrix (or operator, e.g.,

Knuth permutation) of size k×k, H is the p×k parity

check matrix for the LDPC code of length n = k + p

and information rate k, A is an invertable binary

matrix of size p × p. Then, Node B sends Ĝ over a

public channel to Node A. Node A multiplies Ĝ by

its local copy of the bit stream (composed of bits ex-

tracted from multi-loop travel times plus error detec-

tion bits), and sends the resulting syndrom, denoted

as s, to Node B. Knowing the matrices A, G and

P, Node B will be able to revert the randomness and

decode the original LDPC code (locate erroneous bit

positions). This is achieved by �rst computing,

ŝ = A−1s. (4)

It then uses ŝ as the syndrom bits produced by the

parity check matrix HP. Note that HP has a sparse

structure similar to the one used by Node B in gener-

ating H. It is indeed obtained from H by permuting

the columns of H according to the permutation P.

Node B uses the received s to remove discrepancies

between its local bit stream and that of the Node A

(used to generate s). To decode the LDPC code, re-

lying on probability propagation, Node B �ips bits

in its local bit stream to satisfy parity equations cap-

tured in HP (with right hand side values of the par-

ity equations extracted from s). Once the decoding

is completed, the resulting bit stream is permuted by

multiplying it with P−1. Then, the added error de-

tection bits are checked to verify if the recovered bits

are received free of error (is the same as the one at

Node A). If error detection indicates an error, Node

B signals Node A to repeat the entire key generation

procedure. If error detection passes, Node B signals

Node A that the operation has been successful. Upon

successful removal of discrepancies, the resulting vec-

tor of binary values is used as the encryption key.

2.3- Formation of bit likelihoods: Consider a

packet indexed by i and assume its corresponding to-

tal travel time at Node B, i.e., T
(i)
B de�ned in 2 is

at a distance of d
(i)
B from the average delay at Node

B. The corresponding travel time at Node A is equal

to T
(i)
A . Without loss of generality, let us assume

d
(i)
B > 0, corresponding to a bit value of one (in hard

decision decoding). If the average total travel times

at Node A and Node B were exactly the same1, the

chances that the corresponding bit to be a zero at

Node A would be equal to,

P
(
T

(i)
A − T

(i)
B < d

(i)
A

)
=⇒ P

(
d
(i)
1 − d

(i)
2L+1 < d

(i)
B

)
,

(5)

where d
(i)
1 and d

(i)
2L+1 denote the travel times in the

�rst link and the last link for packet indexed by i. We

have concluded, through measurements over nodes

distributed over Microsoft Azure cloud network, that

the probability density function of

z = T
(i)
A − T

(i)
B = d

(i)
1 − d

(i)
2L+1, (6)

is very close to a Laplace density function, i.e.,

f(z) =
λ

2
exp (−λ|z|) =⇒ var(z) = E

(
z2
)
=

2

λ2
.

(7)

Noting symmetry, the probability density function of

T
(i)
B − T

(i)
A = d

(i)
2L+1 − d

(i)
1 , (8)

would be the same as the one given in 7. Conse-

quently, the likelihood value of each bit can be ob-

tained, in closed form, by integrating the probabil-

ity density function in 7. Relevant ranges for in-

tegration (at Node B) are obtained from 5. This

results in a simple closed form expression for each

likelihood value as a function of d
(i)
B > 0 and λ. It

remains to compute the parameter λ in 7. This is

achieved by computing the corresponding variance,

1This assumption may adversely a�ect the �nal error rate,
which, through actual measurements, is shown to be small.

130

i.e., E(z2) = 2/λ2. On the other hand, noting 8 and

assuming random variables d
(i)
2L+1 and d

(i)
1 are inde-

pendent2, it follows

E
(
z2
)
=

2

λ2
= 2E

[(
d
(i)
1

)2
]
. (9)

It remains to compute the variance in 9 at Node B.

To do this, we rely on the fact the sequence of UDP

packets are transmitted, with equal time gaps, over

the �rst link. Node B measures the received times,

TR
(i)
1 , for i = 1, . . . , N whereN is the number of UDP

packets. These times are denoted as ti for packets in-

dexed by i = 1, . . . , N . Due to variation in travel

times of successive packets ti, i = 1, . . . , N are not

uniformly spaced (are not at equal time intervals).

We rely on (minimizing) mean square error criterion

to shift (regularize) the values of ti, i = 1, . . . , N to

have equal time gaps. Due to a potential di�erence

between clock rates at Node A and Node B, the time

gap at Node B (using its local oscillator as the refer-

ence of time) is not necessarily equal to the time gap

at Node A. Let us assume the time gap at Node B

(if all packets were received in equal time intervals)

would be equal to g (measured based on the clock

at Node B). To regularize the packets (order them

at regular time intervals) at Node B, we rely on the

solution to the following problem:

min
o,g

N∑
i=1

(ti − o− ig)2 (10)

where o is an o�set and g denotes the regularized time

gap at Node B. Setting the derivatives of 10 with

respect to o and g equal to zero, one can compute o

and g in closed forms. Adjusting (regularizing) the

values of ti, results in

t̂i = o+ ig. (11)

Finally, we have,

E

[(
d
(i)
1

)2
]
≈ 1

N

N∑
i=1

(
ti − t̂i

)2
. (12)

Note that one could use the values of ti in conjunction

with their regularized values t̂i to compute higher or-

der moments for the desired probability density func-

2This assumption may adversely a�ect the �nal error rate,
which, through actual measurements, is shown to be small.

tion and improve the accuracy of f(z) in 7.

3- Independence of Extracted Bits: A require-

ment in key generation is that the key bits should

be independent of each other. This section studies

this property in conjunction with the key genera-

tion method proposed in this article. Let us use the

generic notation TA and TB to refer to the random

variables in 5 and 8, respectively. Dropping ϵ values

from expressions, for L loops, the common random

variable between TA and TB is equal to

Dc =

2L∑
i=2

di (13)

where di is the random variable corresponding to

variations in travel time across a single link between

Node A and Node B. Note that the relevant aver-

age values are subtracted prior to extracting di val-

ues, and hence di values are small random variations

around the corresponding statistical means. Random

variations are, for example, due to randomness in

network queuing time; random variations in network

switching time, and/or random variations in extract-

ing packets' headers for network route selection. If

random time variations corresponding to successive

packets are independent, then the extracted bits will

be independent of each other. This means, if the In-

ternet channel, with random time variations consid-

ered as channel imperfections, is memory-less, then

the extracted bits will be independent of each other.

Events such as increase in the size of queued data,

and/or bu�er over�ow, result in lasting e�ects, and

memory in the underlying channel, which may inter-

fere with independence property. It follows that

Increasing the time gap between successive

packets reduces channel memory, eventually

resulting in a memory-less channel where ex-

tracted bits become independent of each other.

Privacy ampli�cation is a technique commonly used

to combat any remaining dependencies [6].

4- Computing the Rate of Shared Secret:

This section computes the mutual information (rate

of shared secret) between Node A and Node B. We

have,

TA = Dc + d1 =

2L∑
i=1

di (14)

TB = Dc + d2L+1 =

2L+1∑
i=2

di. (15)

131

It is assumed that variations in travel times are inde-

pendent and identically distributed. As TA and TB

in 14 and 15 are composed of the summation of 2L

independent and identically distributed random vari-

ables, the marginal probability density functions for

TA and TB approaches a Gaussian density for large

values of 2L. Using the notation σ2 to represent

σ2 = E

[(
d
(i)
1

)2
]

(16)

the variance of TA and TB will be equal to

E(T 2
A) = E(T 2

B) = 2Lσ2. (17)

Even though Dc, TA and TB tend to Gaussian distri-

butions for their marginals, one cannot conclude that

TA and TB are jointly Gaussian. Approximating this

joint distribution to be a bi-variate Gaussian, one can

compute the key rate as

I(TA;TB) = H(TA) +H(TB)−H(TA, TB) (18)

≈ log2(4πeLσ
2)− log2

(
2πe|C|1/2

)
C =

[
2Lσ2 2Lσ2 − σ2

2Lσ2 − σ2 2Lσ2

]
(19)

|C| = (4L− 1)σ4. (20)

Replacing in 18, we obtain

I(TA;TB) ≈ 0.5 log2

(
4L2

4L− 1

)
≈ 0.5 log2 (L) . (21)

Figure 3 shows the rate of shared secret. Assum-

ing a Laplace probability density function3 for de-

lay variations in each link (see expression 16 in [5]

with service rate and arrival rate assumed to be equal

to each other, i.e., λ = µ), the probability density

function for TA and TB will be the sum of 2L i.i.d.

Laplace random variables. Figure 3 includes the re-

sult of I(TA;TB) based on such a Laplace density

function for delay variations in each link (I(TA;TB)

is computed through numerical simulation). Noting

that: (i) a Laplace random variable corresponds to

the di�erence between two i.i.d. exponential random

variables, and (ii) the sum of i.i.d. exponential ran-

dom variables results in a Gamma random variable,

it is concluded that the probability density functions

3This assumption a�ects the error rate in key generation,
which, through actual measurements, is shown to be negligi-
ble/acceptable.

of Dc, TA and TB , each correspond to the di�erence

between two i.i.d. Gamma random variables. These

properties can be used to compute the rate of shared

secret, but the resulting expressions are complex and

such a derivation is beyond the scope of this work.

Figure 4 shows a sample of the measured histogram

based on measuring T
(i)
B −T

(i)
A) and density function

obtained analytically from expressions 7,9,12.

5-Numerical Results: Figure 4 shows an exam-

ple for the histogram of T
(i)
B − T

(i)
A , and the corre-

sponding density function obtained analytically from

expressions 7,9,12 (red). Figure 5 shows the corre-

sponding Cumulative Distribution Function (CDF).

Performance of the key generation algorithm is stud-

ied using nodes (over Azure cloud) in Canada, Europe

and East Asia. Table 1 shows the probability that a

common (error-free) key is established in a single at-

tempt. Information block of the LDPC is equal to the

number of delays mentioned in 1, plus 32 bits for er-

ror checking, resulting in 832 bits, and the number of

parities is equal to 416. In decoding the LDPC, reli-

ability values for bits corresponding to UDP packets

are computed from density function obtained using

expressions 7,9,12 and probabilities for 32 error de-

tection bits are set to 0.5 for zero/one. This means,

it is assumed error detection bits are independent

and identically distributed with equal probabilities

for zero and one.

Figure 3: Rate of shared secret, i.e., I(TA;TB).

132

Figure 4: Histogram based on measuring T
(i)
A − T

(i)
B

(black) and density function obtained analytically
from expressions 7,9,12 (red).

Figure 5: Cumulative Distribution Function (CDF)

based on measuring T
(i)
A − T

(i)
B (blue) and CDF ob-

tained analytically from expressions 7,9,12 (red).

of # of Probability Location
Delays Loops of Success of Node A

800 12 69% Canada
800 15 85% Canada
800 20 97% Canada

800 12 76% France
800 15 87% France
800 20 91% France

800 12 79% East Asia
800 15 94% East Asia
800 20 96% East Asia

Table 1: Probability of success in forming a shared
secret in a single round. Node B is within the city of
Waterloo, ON, Canada. In all cases, the size of bits
used in error checking is 32.

References

[1] US patent 11,057,204, �Methods for encrypted data

communications�, A. Khandani (granted)

[2] R. Ahlswede and I. Csiszar, �Common randomness

in information theory and cryptography. I. Secret

sharing," in IEEE Trans. on Info Theory, vol. 39,

no. 4, pp. 1121-1132, July 1993

[3] R. J. McEliece, �A public-key cryptosystem based

on algebraic coding theory,� DSN Progress Report,

pp. 114�116, 1978.

[4] D. Engelbert, R. Overbeck and A. Schmidt �A Sum-

mary of McEliece-Type Cryptosystems and their

Security�, Journal of Mathematical Cryptology, pp.

151�199, May 21, 2007

[5] K. Hammad, A. Moubayed, A. Shami and S. Pri-

mak, "Analytical Approximation of Packet Delay

Jitter in Simple Queues," in IEEE Wireless Comm.

Letters, vol. 5, no. 6, pp. 564-567, Dec. 2016

[6] C. H. Bennett, G. Brassard, C. Crepeau and U.

M. Maurer, �Generalized privacy ampli�cation," in

IEEE Trans. on Info. Theory, vol. 41, no. 6, pp.

1915-1923, Nov. 1995.

133

