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Abstract—In this paper, we tackle the problem of selecting
connected autonomous vehicles (CAVs) with the most valuable
point cloud data for edge-coordinated on-road perception. Through
extensive experiments, we find that adding a CAV for collaborative
perception yields diminishing gain in understanding the on-road en-
vironments, while the generated point cloud data size grows linearly
with the number of employed CAVs. Meanwhile, both vehicular
mobility and diversified road topology lead to the dynamics of
data size of the captured point clouds. Based on those findings,
we then formulate an optimization problem that maximizes the
utility of collaborative perception at edge nodes. Considering the
submodularity of collaborative perception utility and heterogeneity
of point cloud data size from individual vehicles, a CAV candidate
selection algorithm is proposed. The marginal gain of processing the
point cloud data of each candidate is firstly evaluated and ranked,
based on which a subset of CAVs are selected subject to bandwidth
capacity. Finally, experimental results on an open dataset are
presented to demonstrate the superiority of the proposed algorithm
under dynamic traffic conditions and bandwidth fluctuations.

I. INTRODUCTION

The development of artificial intelligence and on-board sensors
has fostered a new era of autonomous driving, with unprece-
dented level of automation [1]–[3]. Mounted with advanced
wireless interface and various sensors, e.g., mmWave Radar and
LiDAR, connected autonomous vehicles (CAVs) are enabled to
perceive on-road environment via multi-modal visionary sensors,
leading to a complementary and comprehensive perception from
visible light, point cloud, infrared images, etc. Among them,
point cloud data (PCD) contains additional depth information,
compared with visible light images. Nonetheless, while on-
board sensors provide essential perceptual inputs, their limited
physical range and sensitivity to occlusion can compromise their
performance. As shown in Fig. 1, even equipped with the most
advanced LiDAR, a single ego vehicle may fail to detect other
vehicles in the distance and manifest perceptual blind zones.

To address this limitation and improve driving safety, col-
laborative perception has emerged as a promising solution,
drawing significant attention from both academia and indus-
try. By leveraging complementary perceptual information from
neighboring CAVs [4], collaborative perception promotes more
holistic and high level awareness of environment perception.
According to the form of shared information, conventional

Fig. 1. A two-dimensional illustration of LiDAR generated point cloud. The ego
vehicle fails to detect objects in the blind zone and that are out of the detection
range.

wisdom on collaborative perception can be broadly categorized
into raw-level [4], [5], feature-level [6], [7], and semantic-
level [8]. In specific, feature-level collaborative perception shares
intermediate features extracted by deep neural networks, which
is implicit and neglects the heterogeneous on-board deep neural
networks across CAVs. Semantic-level collaborative perception
only merges processed results from CAVs, which is efficient but
can result in poor perception performance. While a considerable
amount of research works concentrate on the two aforementioned
stages, collaborative perception in raw-level stands out due to its
intrinsic superiorities: on the one hand, it preserves all captured
information and thus reserves the possibility of achieving the
highest perception performance, on the other hand, thanks to
the granularity of raw data, it enables semantic perception tasks,
such as 3D object detection and 3D semantic segmentation.

Although collaborative perception at raw-level offers distinc-
tive advantages, performing analytic tasks on PCD can be inten-
sive in both computation and storage [9], [10]. In this context,
edge computing technology becomes promising by leveraging
additional computing resource on edge nodes (ENs), e.g., the
roadside units [11]–[13]. Deployed in close proximity to the
road, ENs are able to employ CAVs within its coverage for data
collection, analyze the integrated data and broadcast the resulting
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Fig. 2. The perceptual performance versus # of
employed CAVs.

Fig. 3. The generated PCD size versus # of em-
ployed CAVs.

Fig. 4. The perceptual capability of individual CAVs
across one period.

collaborative perception messages (CPMs) in a sequential man-
ner. While edge-coordinated vehicle-to-infrastructure (V2I) com-
munication can provide more bandwidth resources than current
DSRC-based vehicle-to-vehicle (V2V) communications [14], the
substantial transmission of PCD from CAVs to EN still poses
challenge to existing V2I communication capability, according
to Intel [15], each CAV can generate approximately 4000 GB
of data per day, equivalent to that generated by 3000 mobile
users. Therefore, a bandwidth-efficient collaborative perception
framework with the aid of edge computing is desirable.

In this paper, we first conduct extensive experiments and
reveal that, while ENs can perceive the environment from a
broader perspective by integrating collected information from
CAVs within their coverage range, the mobility of CAVs makes
their individual PCD value to the edge-coordinated perception
dynamic and unpredictable. Furthermore, the information redun-
dancy generated by adjacent CAVs can result in submodular
integrated contributions, i.e., the utility of integrating information
from different CAVs at the ENs subjects to diminishing returns,
a CAV’s perceived PCD is more valuable to the EN when fewer
CAVs are employed. Motivated by such insights, we propose
a framework that enables EN to adaptively employ CAVs in
order to maximize perceptual performance in edge-coordinated
collaborative perception. The contribution of this paper can be
summarized in threefold:

• We explore the correlation between collaborative perceptual
performance and the number of employed CAVs. We also
analyze the influence of vehicular mobility on the PCD
value of individual CAVs. The experimental results reveal
the submodularity of collaborative perceptual performance,
as well as the heterogeneity and dynamic of individual
CAVs’ PCD value.

• We formulate an optimization problem to maximize the
total utility function of the EN with a latency constraint.
Accordingly, a CAV employment algorithm is proposed,
which evaluates the marginal gain of each CAV candidate
and selects the optimal subset.

• Extensive experiments on an open benchmark dataset are
carried out for performance evaluation. The proposed algo-
rithm shows superiority over other baselines under dynamic
traffic conditions and bandwidth fluctuations.

The remainder of this manuscript is organized as follows.
Section II presents the motivating experiments and corresponding
observations. Section III introduces the system model and algo-
rithm design, followed by performance evaluations in Section
IV. Finally, the paper is concluded with future work in Section
V.

II. MOTIVATION

Leveraging the technology of edge computing, the deployed
ENs can provide stable and reliable computation and wireless
communication resources to CAVs. However, as collaboration
perception at raw-level is inherently bandwidth-intensive and the
bandwidth resources on ENs are limited. It is prohibitive for the
ENs to employ all CAVs for point cloud transmission. Motivated
by the envision to utilize bandwidth efficiently, we investigate
the relationship between the perceptual capability, bandwidth
consumption, and the number of employed cooperative CAVs.
Additionally, the dynamic and uncertainty of perceptual capabil-
ity on individual CAV is analyzed. In particular, we conduct
experiments on OPV2V [16], a large-scale simulated dataset
which generates PCD at frequency of 10 Hz. 3D object detection
is designed to be the analytics tasks in those experiments, con-
sidering it is the fundamental task in state-of-the-art autonomous
driving system. Experimental results are presented as follows.

Firstly, we apply PointPillars [17] as 3D detection models
and gradually increase the quantity of cooperative CAVs to 7.
Fig. 2 illustrates the average number of detected vehicles in
two urban scenes, each with around 700 frames. As adjacent
CAVs share overlapping perceptual area, there is information
redundancy in their generated PCD. Therefore, the marginal gain
brought by each CAV decreases as the quantity of CAV increases,
indicating that perceptual performance exhibits the characteristic
of submodularity. However, as depicted in Fig. 3, the generated
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Fig. 5. Illustration for edge-coordinate collaboration perception.

PCD size increases linearly with the number of CAVs, implying
that employing additional CAV for data upload when more CAVs
have been employed incurs higher bandwidth and computation
costs, yet, low perception gain.

Secondly, we explore the impact of time and heterogeneity
on a single CAV’s perceptual capability. Specifically, we record
the number of vehicles detected by different CAVs without
collaboration within a single period, as shown in Fig. 4. It can
be observed that the perceptual capability of a CAV is dynamic
and differs from other CAVs. This indicates that, when selecting
a CAV with the most performance enhancement, the optimal
candidate set is time-varying. Consequently, it is necessary
to develop a framework which can maximize the perceptual
capability of the system while jointly take the submodularity
and dynamic characteristic into consideration.

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

In this paper, we consider a typical urban scenario in which a
set of CAVs are driving across an intersection. This is because
more than 50% of injury or fatal crashes are reported to occur at
or near an intersection1. To support edge-assisted collaborative
perception, we assume a set of CAV candidates C = {1, ..., C}
are willing to contribute their PCD. Without loss of generality,
we assume all CAVs can be accurately positioned and capture
point cloud frames synchronously at the very beginning of each
time slot. An EN with network management functionality is
deployed to provide computation and communication resources.
During each discrete time slot t, a set Kt ⊆ C of CAVs are
employed for collaborative perception. Specifically, they transmit
the captured PCD to the EN, where data fusion and analytic tasks
are performed sequentially. After processing, the EN broadcasts
the generating CPMs to all CAVs before they make next driving
decisions.

An illustration of the considered scenario is presented in Fig.
5. In this case, five CAVs Kt = {k1, k2, k3, k4, k5} are employed

1https://highways.dot.gov/research/research-programs/safety/intersection-
safety

by the EN to transmit their PCD. It can be observed that the
blind zones and miss detection in Fig. 1 are solved through edge-
coordinate collaboration perception.

A. Computation Model

Analytic tasks on PCD are usually computation-intensive [17],
[18], as a result, when designing collaborative perception system,
the computational latency should be considered. Denote the
computation capability of EN by f , the EN computation latency
Lq
t is expressed as:

Lq
t (Kt) =

D(Kt)

f
, (1)

where D(·) and Kt = |Kt| is the required computation resource
function for analytic tasks and number of employed CAVs,
respectively. It is worth noting that D(Kt) increases linearly
since the computing complexity of deep neural networks is
proportional to the range of input PCD.

B. Communication Model

Assume the OFDMA-based C-V2X technology based on
cellular base stations is adopted for vehicular communications
[19]. According to the access in C-V2X, the employed CAVs
share wireless resources provided by the EN. Consequently, in
each time slot t, the total V2I bandwidth Wt is divided into M
orthogonal channels, each with Wt/M Hz.

Due to the mobility of CAVs, the wireless channel quality
between CAV i and the EN exhibits variability. Given the coor-
dinate of the EN and CAV i as (Xt, Yt), (Xi,t, Yi,t), respectively,
the distance between CAV i and EN is:

di,t =
√

(Xt −Xi,t)2 + (Yt − Yi,t)2. (2)

According to the Shannon formula, the V2I uplink data rate
can be expressed as:

Hi,t(Kt) =


Wt

Kt
log2(1 +

pi,tgi,t
Wt
Kt

n0
), Kt ≤M

Wt

Kt
log2(1 +

pi,tgi,t
Wt
M n0

), Kt > M,
(3)

where the sub-channel path loss gi,t = ε(di,t)
−%hi,t, ε, %,

h denotes path loss coefficient, path loss exponent, channel
gain [19], respectively. n0 is the noise density and pi,t is
the transmitting power. Consequently, for CAV i, denoting its
perceptual data volume by Si,t, the PCD transmission latency
Lr
i,t is:

Lr
i,t(Kt) =

Si,t

Hi,t(Kt)
. (4)

Since the CPMs are on semantic-level and much smaller
in size, compared with PCD, we consider the latency caused
by broadcasting CPMs is negligible. At raw-level collaborative
perception, only when all CAVs i ∈ K finishing transmitting,
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the EN can start data fusion and analysis, therefore, the overall
communication latency Lr

t can be represented as:

Lr
t (Kt) = max

i∈Kt

Lr
i,t(Kt). (5)

After receiving captured data from employed CAVs, the EN
projects point clouds from the sender’s view to its own view,
which can be achieved by a coordinate transformation matrix,
then the point clouds from multiple CAVs can be fused in EN.

C. Objective Function and Algorithm Design

As stated in Section II, when employing CAVs for collab-
orative perception, overlapping sensing areas among neighbor-
ing CAVs lead to information redundancy in their contributed
PCD. In other words, the perception capability enhanced by
collaborative CAVs is characterized in diminishing return: the
value of a CAV candidate to EN is higher if fewer CAVs have
been employed, which makes the reward of the EN submodular.
In specific, we denote the utility of EN by U , for two CAV
sets A and B, suppose A ⊆ B ⊆ C and Ck ∈ C/B, define
U(A|B) , U(A ∪ B) − U(B) as a utility set function which
measures the marginal gain of employing set B on the basis of
set A. Then the submodularity can be described as:

U(Ck|A) ≥ U(Ck|B). (6)

Eq. (6) indicates that, given the EN have already employed a
subset A ∈ C, the marginal benefit provided by employing a
CAV does not increase as it employ more CAVs. In each time
slot t, the EN needs to select a subset Kt ⊆ C of CAVs to upload
perceptual data. The objective function aims to maximize the
utility of EN during a period of time T = 1, ..., T , which is
defined as

max

T∑
t=1

U(Kt), (7)

s.t. Lr
t (Kt) + Lq

t (Kt) ≤ τ, ∀t ∈ T . (8)

In Eq. (7), there is a trade-off between utility function and overall
latency. Due to the monotonicity of submodular functions, the
more CAVs employed by EN, the higher utility will be achieved.
Nonetheless, the wireless channel will be congested, which leads
to long transmission delay, correspondingly, the EN computation
latency is also prolonged.

Intrinsically, Eq. (7) aims to maximizing a submodular func-
tion with cardinality constraint that is proven to be NP-hard [20].
We take advantage of greedy solution, which achieves promising
performance with lower bound (1 − 1/e) of optimal. More
specifically, the EN keeps recording the historical performance
from candidate set C. In each time slot t, the EN sequentially
employs CAVs according to their marginal gain (line 4) as long
as Eq. (8) holds (line 5-9), ensuring itself with the highest
utility enhancement. The details of the proposed Greedy CAV
Employment Algorithm is shown in Algorithm 1.

Algorithm 1: Greedy CAV Employment Algorithm
Data: C
Result: {Kt},∀t ∈ T

1 for t ∈ T do
2 Initialization: Kt,Ot ← ∅, Zt ← C
3 while Lr

t (Kt) + Lq
t (Kt) ≤ τ do

4 Ot ← Kt ∪ argmaxi∈Z Ut(Kt ∪ {i})
5 if Lr

t (Ot) + Lq
t (Ot) ≤ τ then

6 Kt ← Ot

7 Z ← C \ Kt

8 Lr
t ← Lr

t (Kt), L
q
t ← Lq

t (Kt)
9 end

10 end
11 Return: Kt

12 end

IV. PERFORMANCE EVALUATION

This section provides a comparison of the proposed algorithm
with several benchmarks under different network conditions. The
performance of the algorithms is evaluated in terms of latency,
followed by detailed description and analysis.

A. Parameter Setting

All experiments are conducted on three urban scenarios from
OPV2V dataset, each with 750 frames and time duration τ = 100
ms. The number of CAVs in each scene and corresponding
vehicle speed fall in [60, 100] and [0, 20] km/h, respectively.
For EN, there are always 7 CAV candidates to employ, which
means |C| = 7. Based on extensive experimental results, the
relationship between computation resource consumption D(·)
as well as data size S(·) and the employed set Kt are fitted
by two linear functions: S(Kt) = 60 × |Kt| GFLOPS and
D(Kt) = 0.028 × |Kt| MHz. Meanwhile, the EN is enabled
with the computation capability of 3 TFLOPS.

Following works in [19], the channel gains of CAVs are
exponentially distributed, i.e., gi,t ∼ Exp(1). Accordingly, CAVs
communicate with the EN with transmission power pi,t = 100
mW and share the V2I bandwidth which varies from 8 MHz
to 20 MHz. Our proposal is compared with the following four
benchmarks.

• Bandwidth-Thrift: From the perspective of bandwidth-
thrift, only one CAV with the most utility gain from set
C will be employed. This methods is expected to utilize the
least bandwidth.

• Unlimited: In each time slot, all of the CAVs in set C are
employed to transmit their PCD. This benchmark does not
take latency constraint into consideration and is expected to
achieve the highest perception performance.
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Fig. 6. Comparison of the cumulative distribution
among different methods in normal channel condi-
tion.

Fig. 7. Comparison of the cumulative distribution
among different methods in poor channel condition. Fig. 8. Comparison among different methods on

average latency

• Agnostic: In each time slot, the EN employs CAV candi-
dates from set C in a round-robin manner, which shows
randomness.

• Area-Maximum: In each time slot, the EN employs CAV
candidates greedily based on maximization of sensing range
instead of utility function. The LiDAR sensing range of
each CAV is set as a rectangle with sides measuring [140m,
80m].

B. Simulation Results

We first measure the utility of EN over time period T
under normal V2I channel condition and analyze the cumulative
distributions of all methods. Next, we consider a constrained
channel condition in which the maximum bandwidth is limited
from 20 MHz to 10 MHz.

As depicted in Fig. 6, the worst and best results are obtained
by Bandwidth-Thrift and Unlimited, respectively, which aligns
with our expectations. Moreover, our proposed method outper-
forms other benchmarks such as Agnostic and Area-Maximum,
achieving a 50% probability of detecting more than 80 vehicles.
The results are consistent with those observed in Fig. 7, where
all methods except Unlimited experience degraded performance
due to poor channel conditions. Nevertheless, our proposal
still outperforms them. Although our proposal performs slightly
inferior to Unlimited under both conditions, it’s important to
note that Unlimited does not account for latency, which will be
illustrated later.

As vehicles are with high mobility, the effectiveness of the
generated CPM is highly sensitive to latency. In Fig. 8, the
average latency of different methods is presented. It is evident
that both Unlimited and Agnostic methods are far from satisfac-
tory due to their high mean value and unstable performance on
latency. The Bandwidth-Thrift method has the least latency, but
it under-utilizes bandwidth. Notably, in contrast to Unlimited,
Agnostic and Area-Maximum, our proposed method not only
achieves the minimal latency but also confines it within 0.1
seconds in all cases. This confirms the robustness of our proposal

under dynamic traffic conditions and network fluctuations, which
is a crucial aspect of collaborative perception.

V. CONCLUSION

In this paper, we have addressed the problem of employing the
most valuable vehicles for efficient on-road perception in edge-
coordinated autonomous vehicles using PCD. Our experimental
results have revealed two significant insights, directly leading to
the formulation of objective function which maximizes the utility
of EN while meeting latency constraint for real-time autonomous
driving. The performance advantages of the designed CAV candi-
dates employing algorithm have been verified through extensive
experiments on an open benchmark dataset. The outcome of
this paper can provide effective solution to autonomous driving
systems. For the future work, we will consider the scenario with
cross-edge coordination for collaborative perception at scale.
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